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Abstract

Most seismic imaging applications still consider the
subsurface as a perfect acoustic or elastic medium,
ignoring the viscosity of rocky materials. That viscosity
converts part of the mechanical energy of seismic
waves into heat, affecting the amplitude and phase of
the wavefield. In this work, we derive, implement
and analyze a set of forward and adjoint viscoacoustic
equations based on the Maxwell, Kelvin-Voigt (KV), and
standard linear solid (SLS) rheological models. For
this implementation, we used Devito - a domain-specific
language (DSL), and code generation framework to
design highly optimized finite difference kernels for use in
inversion methods. We analyzed the attenuating behavior,
comparing each equation’s dissipation and dispersion
effects in these models, both forward modeling equations
through comparisons between snapshots, seismograms,
and traces, and adjoint equations through RTM images.

Introduction

During the seismic wave propagation in the subsurface,
the conversion of mechanical energy into heat occurs
due to the rock’s viscosity (Walcott 1970). In seismic
exploration, the subsurface has still been considered an
ideal elastic/acoustic medium, disregarding the attenuating
effects. In practice, the propagation of seismic waves in the
subsurface is different from propagation in an ideal solid.
The acoustic/elastic wave equation is not sensitive enough
to describe propagation in these more complicated media.
Generally, the viscosity of materials in the subsurface
causes energy dissipation and consequently a decrease
in amplitude, in addition to modifying the frequency content
of waves. This phenomenon of wave energy dissipation is
called seismic absorption or attenuation.

Rheological models have been developed to describe
the attenuation effects during seismic wave propagation.
Viscoacoustic models can also be simulated using wave
equations in the time domain by superimposing a series
of relaxation mechanisms (Schiessel et al. 1995). The
Maxwell model that combines a spring (responsible for the
elastic behavior of the material) and a dashpot (attenuating
element) in series. This model considers that the force
applied to both elements is the same; however, the
elongation (strain) is different since the extension in the
spring is instantaneous, which does not occur in the
dashpot. The quality factor (Q) is directly proportional to

the frequency, its damping being much more substantial
at low frequencies (Carcione, 2014). Another mechanical
model commonly used to describe anelastic effects is the
KV model, which represents the combination of a spring
and a dashpot connected in parallel. The deformation
in both elements is the same. However, the force is
different, and its behavior is better defined by a creep
function, the reciprocal relaxation function in the frequency
domain. Its quality factor Q is inversely proportional to
the frequency. Consequently, there is a more significant
attenuation in the high-frequency content. An SLS element
consists of a series combination of a spring and a KV
model. The stress-strain relationships are obtained from
the SLS model as a temporal convolution, which requires
storage for the wavefields for all timesteps. However, this
temporal convolution can be replaced by the introduction of
an auxiliary memory variable (Carcione et al. 1988).

In this work, we compare wavefields, seismograms,
and RTM images for geological media with different
complexities. The equations based on the SLS, Maxwell
and KV models take as reference the works of Carcione
(2014), Dutta & Schuster (2014), Deng & McMechan
(2007) and Ren et al. (2014). We implement all equations
using Devito, a DSL used to solve modeling and seismic
inversion problems in a high-performance computational
environment (Kukreja et al., 2018; Louboutin et al., 2018).

Forward and adjoint modeling equations

The construction of mechanical models is based on two
elements (springs and dashpots) connected in series,
parallel, or a combination in series and parallel. The spring
represents the elastic behavior, whereas the dashpot
(represented by a cylindrical piston filled with viscous
liquid) represents the dampening behavior.

The viscoacoustic equations based on rheological models
is originated from the stress-strain relationship:

σ =
∂ψ

∂ t
∗ ε = ψ ∗ ∂ε

∂ t
, (1)

σ is the stress, ε is the deformation, and ψ is the relaxation
function. Moreover, we have the following relation

∂ε

∂ t
= ∇ ·v, (2)

with v being obtained by motion equation
∂v
∂ t

=
1
ρ

∇σ , (3)

where v is the particle velocity, and ρ is the density.

Maxwell model

The relaxation function for Maxwell model is defined as:

ψ = MU e(−t/τ)H(t) (4)
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where MU is the elasticity constant of the unrelaxed spring,
H(t) is the Heaviside function, and τ = η/MU = ω0Q is the
relaxation time, being η the viscosity and Q the quality
factor. From Equation 1 with some operations, we obtain
the equations system:

∂ p
∂ t +κ∇ ·v+ ω0

Q p =
∫

S(xs, t)
∂v
∂ t +

1
ρ

∇p = 0,
(5)

where κ is the bulk modulus and ω0 = 2π f0 is the angular
frequency, being f0 the dominant frequency.

The adjoint-state method (Plessix, 2006) was used to
computation the adjoint equation of the forward modeling
operator, applyingthe adjoint operation in the equation 5,
we have: 

∂q
∂ t +∇ · 1

ρ
u− ω0

Q q =−∆d,
∂u
∂ t +∇κq = 0.

(6)

Kelvin-Voigt model

The relaxation function to KV model is determined as:

ψ = MRH(t)+ηδ (t), (7)

where MR is the elasticity constant of the relaxed spring, η

is the viscosity, H(t) and δ (t) are the Heaviside and Dirac
delta functions, respectively.

Again, starting from Equation 1, using the relaxation
function (Equation 7) and following some steps, we get:

∂ p
∂ t +κ∇ ·v−η∇ · 1

ρ
∇p =

∫
S(xs, t),

∂v
∂ t +

1
ρ

∇p = 0.
(8)

being η = τκ with τ = (ω0Q)−1, where κ,η ,τ are the bulk
modulus, viscosity, and relaxation time, respectively.

After applying the adjoint-state method in equation 8, we
obtain: 

∂q
∂ t +∇ · 1

ρ
u+∇ · 1

ρ
∇ηq =−∆d,

∂u
∂ t +∇κq = 0.

(9)

SLS model

The SLS model is the most realistic, consisting of a KV
model connected in series with a spring. The relaxation
function of this model is defined by

ψ = MR

[
1−

(
1− τε

τσ

)
e−t/τσ

]
H(t) (10)

Thus, starting of Equation 1, using Equation 10, and
following some steps, we have

∂ p
∂ t +κ(τ +1)(∇ ·v)+ rp =

∫
S(xs, t),

∂v
∂ t +

1
ρ

∇p = 0,
∂ rp
∂ t + 1

τσ
[rp + τκ(∇ ·v)] = 0,

(11)

where ρ(x) is the density at position x, κ = κ(x) is the Bulk
modulus, v= v(x, t) is the particle velocity vector, S= S(xs, t)
is the source at position xs. The symbol ∗ represents

a convolution operation, which describes the dissipation
mechanism in a viscoacoustic medium in Equation 1. τ =
τε/τσ − 1 represents the magnitude of Q. τε e τσ are,
respectively, the relaxation time stress and strain, given by:

τσ =

√
Q2 +1−1
2π f0Q

and τε =

√
Q2 +1+1
2π f0Q

. (12)

Applying adjoint-state method in equation 11:
∂q
∂ t +∇ · 1

ρ
u =−∆d,

∂u
∂ t +∇(τ +1)κq+∇κ

τ

τσ
rq = 0,

∂ r
∂ t −

1
τσ

r−q = 0.

(13)

Numerical experiments

We conduct modeling and migration experiments for
equations derived from the Maxwell, KV, and SLS models.
We use geological models of different complexities. The
simplest models we tested were for one and two layers,
in which we compared the wavefields and seismograms
for each forward modeling equation. We perform an RTM
using the adjoint equations of each rheological model.
The observed input data for RTM to all cases were
generated with the viscoelastic equation based on the work
of Robertsson et al. (1994).

v and Q constant models

Figure 5 shows the effect of amplitude and phase
attenuation of a seismic wave that propagates in a
homogeneous medium of constant velocity for different
values of Q and different equations. An integrated Ricker
function with a peak frequency of 20 Hz was used as a
source, injected in the model’s center.

The wavefront in Figure 5 compares with Q = 20 and
Q = 50 concerning the acoustic case, which is pretty
similar for small propagation timesteps. However, as
the propagation time increases and the wavefield moves
to greater distances, the attenuation becomes more
pronounced, especially for experiments with Q = 20. It is
possible to see in Figure 5e and 5f simulated with Maxwell
equations have higher dissipative power than approaches
based on KV and SLS equations due to a pronounced
wavefront amplitude drop.

Two-layer model

The two-layer model (Figure 1) is used to show the stability
of the viscoacoustic modeling for a medium with high-
velocity contrast and Q factor, as well as to highlight the
reflection and transmission phenomena in Figure 6.

Figure 1 – Two-layer model parameters. Top layer: v =
1800 m/s and Q = 30. Bottom layer: v = 3000 m/s and
Q = 100.
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Figure 6c presents the time instants of a wave field
propagated up to 0.5 s time. At first glance, it is worth
noting that the generated wavefronts with the Maxwell and
KV equations present more evident energy dissipation than
those of the SLS. To make a deeper analysis, we take
a trace at the 1.5 km offset, as illustrated by the dash in
Figure 6c, to the wavefront of all equations and put them
together in a comparison shown in Figure 6d. Observing
these comparisons, it is easy to conclude that the green
dashed line representing the SLS model is the only one
that presents a phase shift concerning the acoustic case,
regardless of the order of the equation used.

Figure 6a shows a modeled seismogram with a source
in the center at the surface. According to the reflection
indicated by the red arrow, the substantial drop in amplitude
occurs in all viscoacoustic equations. However, the SLS
model is the one that has the lowest loss, especially
the Maxwell model, which ends up with an almost
imperceptible reflection. To more accurately observe the
effects observed in the seismograms, we compared the
traces taken at the 1 km position, as dashed in Figure 6a,
where they are in Figure 6b. In this image, the green
trace has a sizeable temporal displacement concerning
the others, thus indicating that the SLS models have a
strong dispersion. Still analyzing the green trace, there is
also a marked loss of amplitude concerning the reference
acoustic. The KV and Maxwell EVAs, on the other
hand, showed only energy dissipation, with Maxwell being
extremely sensitive to low Q factor values.

Marmousi

Figure 2a shows the velocity model, the values varies of
1500 m/s to 5500 m/s. The Q model was calculated by
empirical equation Q = 3.516× v2.2 ×10−6 (Li, 1993).Using
the Gardner relation (Gardner et al., 1974), we obtained the
density model. In addition, we calculated an approximation
of reflectivity (Figure 2b). These models have 9.2× 3 km2,
were discretized with nx = 369 and nz = 375 samples, in a
mesh of ∆x = 25 m and ∆z = 8 m. The total recording time
was 4 s, with frequency peak of 12 Hz, considering 5716
samples at a sampling interval ∆t = 0.7 ms.

(a) (b)

Figure 2 – Marmousi model: velocity (a) and reflectivity (b).

We performed numerical simulations for the seismogram
with the source located at 4.7 km and receivers scattered
on the surface. The arrows indicated in Figure 7a shows
a decrease in the amplitudes of the seismic events.
Analyzing the central region of the seismograms in the
time interval from 1.5 to 2.5 s presents a more significant
attenuation than the other regions, mainly for the Maxwell
and KV viscoacoustic equations. The traces taken at
3.75 km offset are shown in Figure 7b, examining the green
trace in the SLS viscoacoustic equation we can see a
temporal displacement does not occur in the remaining

traces, indicating that only phase dispersion occurs for this
equation.

Figure 8a shows snapshots at times 0.7 e 1.2 s. We note
that for the shorter times, there is no noticeable distortion
of the wavefronts. For longer times, in general, a slight
loss of amplitude, especially in the central region of the
model. We also analyzed the trace at the 4.6 km offset,
as indicated by the dashed line in Figura 8a. Figure 8b
show the comparison between the traces for the wavefields
at time 0.7 s and the wavefields at time 1.2 s, respectively.
There is an amplitude reduction of the wavefields of all
viscoacoustic equations compared to the trace generated
by the acoustic equation. This effect is natural and
expected since the wave propagates for a longer time
and oscillates more times. However, the phase dispersion
effect occurs only for the viscoacoustic equation based on
the SLS model.

Gas chimney

The Gas Chimney constitutes a minor clipping of the BP
model (Billette & Brandsberg-Dahl, 2005). Figure 3a and
Figure 3b illustrate the velocity and reflectivity, respectively.
The density and Q factor were calculated by Gardner
relation (Gardner et al., 1974) and empirical equation Q =
3.516× v2.2 × 10−6 (Li, 1993). These models have 9.995×
4 km2, discretized with nx = 995 and nz = 402 samples.

(a) (b)

Figure 3 – Gas chimney model: velocity (a). Reflectivity(b).

Figure 9a shows all the seismograms for the analyzed
viscoacoustic equations. The Gas Chimney model has
a low Q factor anomaly, the upper central part of the
model (Figures 3a). Its effect is notable in seismograms,
presenting a significant energy loss, mainly for the Maxwell
model. Analyzing the red dashed circle, we notice that
the dissipative effect is not as strong as the region for
the longer times indicated by the arrows. Furthermore,
beyond amplitude reduction, the velocity phase dispersion
effect exists for the SLS equation, which causes seismic
pulse distortion. The traces for the equations based on the
Maxwell and KV rheological models show the dissipative
effect (Figure 9). However, they are not displaced,
characterizing the non-occurrence of the dispersive effect
because these viscoacoustic equations do not consider the
dispersion phenomena.

We compared the wavefront propagation instants for
0.7 s and 1.2 s times between acoustic and viscoacoustic
modeling. We see in Figure 10a, at 0.7 s, the wavefronts
are still at the top of the Gas Chimney. However, as the
wave propagates and passes through the Gas chimney,
there are substantial loss of amplitude of the waves in the
viscoacoustic case (as seen at 1.2 s in Figure 10a). We
observe the effects of dissipation and dispersion in-depth
traces for the two-time instants presented in Figures 10b.
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Note in 0.7 s (Figure 10b), the dissipation phenomenon
already occurs in all equations viscoacoustic, and soft
dispersive only for the SLS equation. At 1.2 s time, the
phase dispersion becomes higher for SLS model.

SEAM

The 2-D SEAM model is based on a deep water model of
the Gulf of Mexico, containing a salt body in the central
region. This model has spatial dimensions of 35km in the
East-West direction and 15km in-depth, spaced every dx =
20 m and dz = 20 m, respectively. In Figure 4a and b, we
have the P-wave and the S-wave velocity model.

(a) (b)

Figure 4 – SEAM model: P-velocity (a), S-velocity (b).

We generated observed viscoelastic data with 200 shots,
spaced every 175m, peak frequency of 12 Hz, and recording
time of 10 s. Figures 11a, 11b, and 11c show three shots
at offset 0.175 km, 17.51 km, and 34.84 km, respectively.
Figures 12a, 12b, and 12c show the result of the RTM
images for the forward and adjoint equations based on the
SLS, Maxwell, and KV model, respectively. Because SLS
forward and adjoint equations contemplate the effects of
dissipation and dispersion, it is evident that the SLS RTM
image has the highest resolution (Figure 12a), showing the
salt flank regions better illuminated and reflectors better
delineated than the RTM images based on the Maxwell
(Figure 12b) and KV (Figure 12c) rheological models.
Furthermore, we can see that the RTM image from the KV
model (Figure 12c) is better illuminated than the RTM from
the Maxwell model (Figure 12b).

Conclusions

We performed physical-numerical experiments considering
velocity, quality factor, and density models with different
complexities, explaining in detail the behavior and
characteristics of each equation. Unlike the equations
based on the Maxwell and KV models, the SLS equations
can reasonably simulate the energy dissipation and phase
dispersion phenomena in the forward modeling stage.
They can also correct these effects in the reverse
propagation stage through adjoint modeling, as evidenced
in the results of RTM images. On the other hand, we note
that the equations based on Maxwell and KV rheological
models are most dissipative because they mainly simulate
the energy loss effect.
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(a) (b) (c)

Figure 5 – Snapshots showing an expanding wavefront at different instances of time for the equations: (a) SLS, (b) KV, (c)
Maxwell.

(a) (b) (c) (d)

Figure 6 – Seismograms comparison, for two-layer model, between acoustic and viscoacoustic cases (a) and vertical traces
comparison at 1 km (b) Snapshots comparison, for two-layer model, between acoustic and viscoacoustic cases at instances of
0.5s (c) and vertical traces comparison at 1.5 km (d).

(a) (b)

Figure 7 – Marmousi model: seismograms comparison among acoustic, SLS, KV, and Maxwell equations (a) and traces
comparison at 3.75 km (b).

(a) (b)

Figure 8 – Marmousi model: snapshots comparison between acoustic and viscoacoustic cases at instances of 0.7 and 1.2 s (a).
Traces comparison at offset 4.6 km at instances: 0.7 s and 1.2 s (b).
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(a) (b)

Figure 9 – Gas chimney model: seismograms comparison among acoustic, SLS, KV and Maxwell equations (a), and traces
comparison at 3.75 km (b).

(a) (b)

Figure 10 – Gas chimney model: snapshots comparison between acoustic and viscoacoustic cases at instances of 0.7 and
1.2 s (a). Traces comparison at offset 4.6 km at instances: 0.7 s (b) and 1.2 s (c).

(a) (b) (c)

Figure 11 – SEAM shots generated at offset: = 0.175 km (a), = 17.51 km (b), and offset = 34.84 km (c).

(a) (b) (c)

Figure 12 – SEAM model: viscoacoustic RTM applied to the viscoelastic dataset using viscoacoustic adjoint equation based on
the rheological model: SLS (a), Maxwell (b), and KV (c).
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